Electric Power Steering System with Ideal PMSM and Drive Designer237294 × Member for 4 years 3 months 4 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/396877 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/396877"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive Designer237294 × Member for 4 years 3 months 4 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/396670 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/396670"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive Designer237294 × Member for 4 years 3 months 4 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/396670 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/396670"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Tue, 12/15/2020 - 14:41 Designer237185 × Member for 4 years 3 months 15 designs 1 groups https://explore.partquest.com/node/392168 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/392168"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Fri, 12/11/2020 - 11:23 Designer219536 × Member for 5 years 9 months 21 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/391050 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/391050"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Fri, 12/11/2020 - 11:23 Designer219536 × Member for 5 years 9 months 21 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/391050 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/391050"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Wed, 12/02/2020 - 11:21 Designer236951 × Member for 4 years 4 months 6 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/386017 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/386017"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Wed, 12/02/2020 - 11:21 Designer236951 × Member for 4 years 4 months 6 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/386017 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/386017"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Thu, 11/26/2020 - 15:09 Designer236778 × Member for 4 years 4 months 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/384467 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/384467"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Thu, 11/26/2020 - 11:52 Designer216469 × Member for 5 years 11 months 9 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/384140 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/384140"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -