ammar yaser al-oqamiDesigner230039 × al-oqami Member for 4 years 8 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/284777 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/284777"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Mon, 03/02/2020 - 12:39 al-oqamiDesigner230039 × al-oqami Member for 4 years 8 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/284775 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/284775"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Thu, 02/20/2020 - 16:49 jupryhamzahDesigner229733 × jupryhamzah Member for 4 years 9 months 6 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/282929 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/282929"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Wed, 02/19/2020 - 18:24 ramgadhvi13Designer229853 × ramgadhvi13 Member for 4 years 9 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/282840 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/282840"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Tue, 02/18/2020 - 08:08 rolmadrid99Designer229821 × rolmadrid99 Member for 4 years 9 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/282652 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/282652"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p><p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p><p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p><p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Sat, 02/15/2020 - 03:46 rapelangphachaka53Designer229766 × rapelangphachaka53 Member for 4 years 9 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/282330 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/282330"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p><p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p><p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p><p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Thu, 02/13/2020 - 09:48 shinya.tajimaDesigner229731 × shinya.tajima Member for 4 years 9 months 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/282095 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/282095"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p><p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p><p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p><p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Wed, 02/12/2020 - 15:23 rohm.solution.simulatorDesigner229552 × rohm.solution.simulator Member for 4 years 9 months 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/282029 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/282029"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p><p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p><p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p><p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Mon, 02/10/2020 - 09:19 jhchoDesigner229604 × jhcho Member for 4 years 9 months 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/281361 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/281361"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p><p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p><p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p><p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Fri, 02/07/2020 - 14:35 claudiomcsDesigner229560 × claudiomcs Member for 4 years 9 months 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/281147 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/281147"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p><p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p><p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p><p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -