EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive_1 MASADesigner208 × MASA Member for 9 years 8 months 579 designs 8 groups https://explore.partquest.com/node/272040 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/272040"></iframe> Title Description <p>This Electric Power Steering (EPS) System design includes a MotorSolve generated Permanent Magnet Synchronous Machine (PMSM) model and a PWM Drive circuit. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p><p>The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p><p>In a companion version of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive. This shows the ability to develop motor controls and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMPWMSVMD-QMotorSolveEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and PWM NMOS Drive JSAE MASADesigner208 × MASA Member for 9 years 8 months 579 designs 8 groups https://explore.partquest.com/node/271966 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/271966"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to drive the Power MOSFET switches of the inverter.</p><p>There are two other versions of this design. The first, "PMSM Motor And Ideal Drive", uses continuous Clarke and Park Transform models and an ideal voltage drive to represent the main features of the field-oriented control system., Another version, "PMSM Motor and PWM Drive", it similar to this version but uses ideal switches.</p><p>This version is the most detailed and therefore simulated the most slowly. It is well suited for understanding the performance of the Power MOSFETs in the context of the system, In the waveform plot on the right, the actual motor shaft angle (orange waveform) and the A-phase current (dark blue waveform) are shown. These are very similar to the results for the other two versions of the design. But the waveform plot on the left provides insight into the performance of the C-phase inverter pull-up switch. The MOSFET current Ids (green waveform), and the average power dissipated in the device (red waveform) are shown. This design can be used to size specific parts in the drive electronics, by comparing the operating conditions to which they are exposed, relative to their rated operational limits.</p> About text formats Tags PMSMBLDCPWMpower MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and PWM NMOS Drive JSAE MASADesigner208 × MASA Member for 9 years 8 months 579 designs 8 groups https://explore.partquest.com/node/271965 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/271965"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to drive the Power MOSFET switches of the inverter.</p><p>There are two other versions of this design. The first, "PMSM Motor And Ideal Drive", uses continuous Clarke and Park Transform models and an ideal voltage drive to represent the main features of the field-oriented control system., Another version, "PMSM Motor and PWM Drive", it similar to this version but uses ideal switches.</p><p>This version is the most detailed and therefore simulated the most slowly. It is well suited for understanding the performance of the Power MOSFETs in the context of the system, In the waveform plot on the right, the actual motor shaft angle (orange waveform) and the A-phase current (dark blue waveform) are shown. These are very similar to the results for the other two versions of the design. But the waveform plot on the left provides insight into the performance of the C-phase inverter pull-up switch. The MOSFET current Ids (green waveform), and the average power dissipated in the device (red waveform) are shown. This design can be used to size specific parts in the drive electronics, by comparing the operating conditions to which they are exposed, relative to their rated operational limits.</p> About text formats Tags PMSMBLDCPWMpower MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and Ideal Drive - fork - just testing stuff MattiasDesigner223796 × Mattias Member for 5 years 1 month 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/271516 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/271516"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and Ideal (continuous) Drive circuit, with mechanical load. The drive includes a D-Q control algorithm.</p><p>In a companion version of this design, "PMSM Motor And PWM Drive", the same motor control algorithm is used but SVM (space vector modulation) provides PWM switching signals to ideal switches in an actual 3-phase inverter implementation.</p> About text formats Tags PMSMPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and Ideal Drive JSAE MASADesigner208 × MASA Member for 9 years 8 months 579 designs 8 groups https://explore.partquest.com/node/270398 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/270398"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and Ideal (continuous) Drive circuit, with mechanical load. The drive includes a D-Q control algorithm.</p><p>In a companion version of this design, "PMSM Motor And PWM Drive", the same motor control algorithm is used but SVM (space vector modulation) provides PWM switching signals to ideal switches in an actual 3-phase inverter implementation.</p> About text formats Tags PMSMBLDCPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and PWM Drive naganotaDesigner222386 × naganota Member for 5 years 2 months 3 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/269658 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/269658"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p><p>The waveform plot in the upper left shows the drive command (light blue waveform), with values 0 to 1, where 1 is commanding the maximum quadrature current of 10 A. The motor's response is the output shaft angle in radians (orange waveform), and shows that increasing torque command results in greater rotational displacement against the load spring. The waveform plot in the upper right shows the actual motor torque (green waveform) and the A-phase current (dark blue waveform).</p><p>In a companion version of this design, "PMSM Motor And Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive.This shows the ability to develop motor control and drives at the abstract level and at the circuit level.</p><p>In yet another version of this design example, the ideal switches will be replaced with actual power MOSFET device models. This can help in bridge component sizing and performance specification.</p> About text formats Tags PMSMBLDCPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and PWM Drive3 AsumaDesigner139151 × Asuma Member for 7 years 3 months 22 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/269654 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/269654"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p><p>The waveform plot in the upper left shows the drive command (light blue waveform), with values 0 to 1, where 1 is commanding the maximum quadrature current of 10 A. The motor's response is the output shaft angle in radians (orange waveform), and shows that increasing torque command results in greater rotational displacement against the load spring. The waveform plot in the upper right shows the actual motor torque (green waveform) and the A-phase current (dark blue waveform).</p><p>In a companion version of this design, "PMSM Motor And Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive.This shows the ability to develop motor control and drives at the abstract level and at the circuit level.</p><p>In yet another version of this design example, the ideal switches will be replaced with actual power MOSFET device models. This can help in bridge component sizing and performance specification.</p> About text formats Tags PMSMBLDCPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and PWM Drive kkadotaDesigner222486 × kkadota Member for 5 years 2 months 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/269652 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/269652"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p><p>The waveform plot in the upper left shows the drive command (light blue waveform), with values 0 to 1, where 1 is commanding the maximum quadrature current of 10 A. The motor's response is the output shaft angle in radians (orange waveform), and shows that increasing torque command results in greater rotational displacement against the load spring. The waveform plot in the upper right shows the actual motor torque (green waveform) and the A-phase current (dark blue waveform).</p><p>In a companion version of this design, "PMSM Motor And Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive.This shows the ability to develop motor control and drives at the abstract level and at the circuit level.</p><p>In yet another version of this design example, the ideal switches will be replaced with actual power MOSFET device models. This can help in bridge component sizing and performance specification.</p> About text formats Tags PMSMBLDCPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and PWM Drive NYujiDesigner222342 × NYuji Member for 5 years 2 months 3 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/269651 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/269651"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p><p>The waveform plot in the upper left shows the drive command (light blue waveform), with values 0 to 1, where 1 is commanding the maximum quadrature current of 10 A. The motor's response is the output shaft angle in radians (orange waveform), and shows that increasing torque command results in greater rotational displacement against the load spring. The waveform plot in the upper right shows the actual motor torque (green waveform) and the A-phase current (dark blue waveform).</p><p>In a companion version of this design, "PMSM Motor And Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive.This shows the ability to develop motor control and drives at the abstract level and at the circuit level.</p><p>In yet another version of this design example, the ideal switches will be replaced with actual power MOSFET device models. This can help in bridge component sizing and performance specification.</p> About text formats Tags PMSMBLDCPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PMSM Motor and PWM Drive YHDesigner222333 × YH Member for 5 years 2 months 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/269650 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/269650"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p><p>The waveform plot in the upper left shows the drive command (light blue waveform), with values 0 to 1, where 1 is commanding the maximum quadrature current of 10 A. The motor's response is the output shaft angle in radians (orange waveform), and shows that increasing torque command results in greater rotational displacement against the load spring. The waveform plot in the upper right shows the actual motor torque (green waveform) and the A-phase current (dark blue waveform).</p><p>In a companion version of this design, "PMSM Motor And Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive.This shows the ability to develop motor control and drives at the abstract level and at the circuit level.</p><p>In yet another version of this design example, the ideal switches will be replaced with actual power MOSFET device models. This can help in bridge component sizing and performance specification.</p> About text formats Tags PMSMBLDCPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -