Electric Power Steering System with Ideal PMSM and Drive Designer19 × 0 designs 10 groups Member of the PartQuest Explore Development Team. Focused on modeling and simulation of analog, mixed-signal and multi-discipline systems covering a broad range of applications, including power electronics, controls and mechatronic systems. https://explore.partquest.com/node/240623 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/240623"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of STW45NM50 MOSFET Switching Design for Moog PMSM - BLDC Motor Use-Case - on Wed, 12/17/2025 - 11:04 Designer249130 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/701768 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/701768"></iframe> Title Description <p>This design is almost identical to the design "DS Power MOSFET Switching Design for Moog PMSM - BLDC Motor Use-Case", but the datasheet MOSFET switches in the inverter were replaced with the manufacturer provided SPICE model for the STW45NM50 device.</p> About text formats Tags PMSMBLDCPWMSTW45NM50SVMThermal Package model Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Thu, 10/09/2025 - 18:09 Designer244519 × 0 designs 1 groups I'm a member of the PartQuest Explore community. https://explore.partquest.com/node/697881 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/697881"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead compensator is used to improve system stability.</p><p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p><p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p><p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Tue, 07/22/2025 - 12:42 Designer263074 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/695308 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/695308"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
EPS System with PMSM Motor and Toshiba TPHR7904PB Power MOSFET JSAE 2025 Designer241497 × 0 designs 6 groups I'm a member of the PartQuest Explore Promoto. https://explore.partquest.com/node/694833 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/694833"></iframe> Title Description <p>This Electric Power Steering (EPS) System design includes a PWM Switching Inverter circuit that uses Toshiba TPHR7904PB Power MOSFETs. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate digital PWM signals. These control the ON/OFF state of the switches.</p> <p>The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, the first gain/pole-zero block (far left) specifies the amount of "torque_assist" gain (assist torque as a multiple of the vehicle operator's torque applied to the steering wheel), as well as providing compensation to improve system stability.</p> <p>This design focuses on the performance of the switches in the inverter circuit, including tracking of the thermal characteristics of one representative switch. In a companion version of this design, "EPS System with PMSM - Pre-Circuit Design for Toshiba Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive, and provides much faster simulation results with a focus on overall system dynamic performance.</p> About text formats Tags PMSMPWMSVMD-QEPSPower SteeringTPHR7904PB Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
EPS System with 1D PMSM Model and DQ/SVM Drive JSAE 2025 Designer241497 × 0 designs 6 groups I'm a member of the PartQuest Explore Promoto. https://explore.partquest.com/node/694831 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/694831"></iframe> Title Description <p>This Electric Power Steering (EPS) System design includes a MotorSolve generated Permanent Magnet Synchronous Machine (PMSM) model and a PWM Drive circuit. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p> <p>The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead-lag compensator is used to improve system stability.</p> <p>In a companion version of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive. This shows the ability to develop motor controls and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMPWMSVMD-QMotorSolveEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
EPS System with Ideal PMSM JSAE 2025 Designer241497 × 0 designs 6 groups I'm a member of the PartQuest Explore Promoto. https://explore.partquest.com/node/694830 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/694830"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, the first gain/pole-zero block (far left) specifies the amount of "torque_assist" gain (assist torque as a multiple of the vehicle operator's torque applied to the steering wheel), as well as providing compensation to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>A companion design, "EPS System with PMSM Motor and Toshiba SSM3K33R Power MOSFET", uses a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control Toshiba SSM3K333R Power MOSFET switches in a switching inverter circuit. That design forcuses on the performance and temperature monitoring of those switches.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of PMSM Motor and PWM Drive - on Mon, 06/09/2025 - 11:21 Designer262067 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/694484 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/694484"></iframe> Title Description <p>Permanent Magnet Synchronous Machine (PMSM) and PWM Drive circuit, with mechanical load. The drive includes a D-Q control algorithm, and uses space-vector modulation (SVM) to generate the digital PWM signals to the switches of the bridge.</p> <p>The waveform plot in the upper left shows the drive command (light blue waveform), with values 0 to 1, where 1 is commanding the maximum quadrature current of 10 A. The motor's response is the output shaft angle in radians (orange waveform), and shows that increasing torque command results in greater rotational displacement against the load spring. The waveform plot in the upper right shows the actual motor torque (green waveform) and the A-phase current (dark blue waveform).</p> <p>In a companion version of this design, "PMSM Motor And Ideal Drive", Clarke and Park Transform models are used with a continuous ideal voltage drive.This shows the ability to develop motor control and drives at the abstract level and at the circuit level.</p> <p>In yet another version of this design example, the ideal switches will be replaced with actual power MOSFET device models. This can help in bridge component sizing and performance specification.</p> About text formats Tags PMSMBLDCPWM Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Tue, 06/03/2025 - 16:35 Designer262281 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/694386 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/694386"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Electric Power Steering System with Ideal PMSM and Drive - on Wed, 05/07/2025 - 19:30 Designer255238 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/693558 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/693558"></iframe> Title Description <p>This design includes an ideal Permanent Magnet Synchronous Machine (PMSM) model, as well as a continuous D-Q controller and drive circuit. The mechanical load model includes static and kinetic friction, a steering force that varies with rack displacement, as well as various mass, inertia, damping and spring/stiffness elements of the steering system. The steering torque, applied by the vehicle's driver, is assisted by torque from the motor scaled by the gear ratio. For the control, a non-linear gain profile is specified in the "torque_assist_table" function, and a lead compensator is used to improve system stability.</p> <p>Note that this is a "tunable" design. Many of these system parameters can be changed by the user. Then a new simulation can be run and the updated results can be observed in the waveform viewers.</p> <p>In a companion versions of this design, "EPS System with MotorSolve Generated PMSM Model and Ideal Drive", the ideal PMSM is replaced with a more realistic motor model generated by MotorSolve, the motor design tool. That model includes cogging torque, saturation and torque ripple behavior, which is seen to have a significant effect in this power steering application.</p> <p>A second companion design, "EPS System with MotorSolve Generated PMSM Model and DQ/SVM Drive", uses both the MotorSolve motor model and also a sampled-data D-Q control algorithm and space-vector modulation (SVM) to control the switches in a power electronics circuit. This shows the ability to develop motor control and drives at the abstract level and also at the circuit level.</p> About text formats Tags PMSMEPSPower Steering Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -