Copy of Loudspeaker with Simple Amplifier - on Tue, 05/26/2020 - 08:15 farhad.pirvaliDesigner232069 × farhad.pirvali Member for 4 years 6 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/316733 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/316733"></iframe> Title Description <p>This "Live" example design includes a simple analog electronic amplifier, intended only to demonstrates the importance of multi-discipline system modeling.</p> <p>A swept frequency response test, from 40 Hz to 1000 Hz, shows the effect of the complex amplifier loading by the voice-coil and speaker-cone dynamics*. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency (60 Hz). The loudspeaker reaches its minimum impedance around 600 Hz, or at 0.6 seconds where the peak load current is observed.</p> <p>The simulation results also show that the average power (q1/npn/pwr_avg) in the BDP947 BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The red "hot part monitor", with the junction to ambient thermal resistance set to 10 C/Watt, as given in the datasheet, shows the part temperature rising to over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p> <p>All of the parameters in blue can be changed by the user and a new simulation run. The updated scope waveform results will show the effect of that change. You can change the electrical resistance and inductance of the voice-coil, as well as the speaker cone mass and linear spring rate that affect the resonance frequency.</p> <p>* Note: Please refer to this companion example, that shows the input impedance frequency response of the loudspeaker alone:</p> <p>https://www.systemvision.com/design/loudspeaker-only-frequency-response</p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronicsmagnetic actuator Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Loudspeaker with Simple Amplifier - on Wed, 02/19/2020 - 17:28 vleckenDesigner229856 × vlecken Member for 4 years 10 months 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/282849 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/282849"></iframe> Title Description <p>This "Live" example design includes a simple analog electronic amplifier, intended only to demonstrates the importance of multi-discipline system modeling.</p> <p>A swept frequency response test, from 40 Hz to 1000 Hz, shows the effect of the complex amplifier loading by the voice-coil and speaker-cone dynamics*. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency (60 Hz). The loudspeaker reaches its minimum impedance around 600 Hz, or at 0.6 seconds where the peak load current is observed.</p> <p>The simulation results also show that the average power (q1/npn/pwr_avg) in the BDP947 BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The red "hot part monitor", with the junction to ambient thermal resistance set to 10 C/Watt, as given in the datasheet, shows the part temperature rising to over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p> <p>All of the parameters in blue can be changed by the user and a new simulation run. The updated scope waveform results will show the effect of that change. You can change the electrical resistance and inductance of the voice-coil, as well as the speaker cone mass and linear spring rate that affect the resonance frequency.</p> <p>* Note: Please refer to this companion example, that shows the input impedance frequency response of the loudspeaker alone:</p> <p>https://www.systemvision.com/design/loudspeaker-only-frequency-response</p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronicsmagnetic actuator Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
TDFS Loop Stability for Buck DC to DC Converter - Switching ikguyDesigner7846 × ikguy Member for 9 years 1 month 12 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/269352 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/269352"></iframe> Title Description <p>This design demonstrates the use of the TDFS (Time Domain Frequency Sweep) simulation method, to measure the open-loop frequency response of an operating closed-loop system containing switching elements.</p> <p>The stability of the "Buck DC to DC Converter - Switching" design is assessed. This is a switching circuit, it does not use a state-average model for the modulator, so the standard AC Analysis method cannot be used. Rather, the frequency response is generated from time-domain simulation results. The TDFS approach can also be used for systems that contain sampling or digital control aspects.</p> <p>This particular example is directly comparable to the design titled "TDFS Loop Stability for Buck DC to DC Converter - State Average". In that design, both the TDFS and AC Analysis methods are used to measure the open loop transfer function of an equivalent non-switching circuit.</p> <p>Note that the approach used to characterize the loop stability, by injecting a small sinusoidal stimulus signal in series with the loop and then measuring the complex ratio of the ground referenced return signal to the injected signal, is described in:</p> <p>D. Venable, “Testing Power Sources for Stability”, Venable technical paper #1, Venable Industries</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterNCV20071 Op-AmpNRVBA130LT3G Schottky Power RectifierMSS1583-105KE_ Power InductorPEG127KA3110Q Electrolytic CapacitorTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
TDFS Loop Stability for Buck DC to DC Converter - Switching NormDesigner43361 × Norm Member for 8 years 8 months 328 designs 2 groups https://explore.partquest.com/node/264927 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/264927"></iframe> Title Description <p>This design demonstrates the use of the TDFS (Time Domain Frequency Sweep) simulation method, to measure the open-loop frequency response of an operating closed-loop system containing switching elements.</p><p>The stability of the "Buck DC to DC Converter - Switching" design is assessed. This is a switching circuit, it does not use a state-average model for the modulator, so the standard AC Analysis method cannot be used. Rather, the frequency response is generated from time-domain simulation results. The TDFS approach can also be used for systems that contain sampling or digital control aspects.</p><p>This particular example is directly comparable to the design titled "TDFS Loop Stability for Buck DC to DC Converter - State Average". In that design, both the TDFS and AC Analysis methods are used to measure the open loop transfer function of an equivalent non-switching circuit.</p><p>Note that the approach used to characterize the loop stability, by injecting a small sinusoidal stimulus signal in series with the loop and then measuring the complex ratio of the ground referenced return signal to the injected signal, is described in:</p><p>D. Venable, “Testing Power Sources for Stability”, Venable technical paper #1, Venable Industries</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterNCV20071 Op-AmpNRVBA130LT3G Schottky Power RectifierMSS1583-105KE_ Power InductorPEG127KA3110Q Electrolytic CapacitorTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier Subhash_1Designer209631 × Subhash_1 Member for 5 years 11 months 7 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/255008 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/255008"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier AbdelilahDesigner207267 × Abdelilah Member for 6 years 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/252482 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/252482"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Buck DC to DC Converter - Switching DarrellDesigner10 × Darrell Member for 11 years 1 month 624 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/252334 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/252334"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example: “Buck DC to DC Converter vs. Linear Regulator”. This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensators, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients, ripple rejection and the power consumption are very similar to the results from the abstract model.</p><p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVBA130LT3G) and op-amps (NCV20071), as well as the passive inductor (MSS1583-105KE_) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p><p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models. For example, the stress indicator for the power inductor shows that the maximum RMS current level is exceeded under this simulated operating condition (i.e. stress_ratio_current_rms > 1.0).</p><p>The companion design, "TDFS Loop Stability for Buck DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterMCH6337 P-Channel MOSFETNCV20071 Op-AmpNRVBA130LT3G Schottky Power RectifierMSS1583-105KE_ Power InductorPEG127KA3110Q Electrolytic Capacitor Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier DarrellDesigner10 × Darrell Member for 11 years 1 month 624 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/240391 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/240391"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier CsarDomnguezDesigner131861 × CsarDomnguez Member for 7 years 6 months 11 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/214416 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/214416"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Buck DC to DC Converter - Switching dharamrajDesigner161231 × dharamraj Member for 7 years 1 month 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/204826 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/204826"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example: “Buck DC to DC Converter vs. Linear Regulator”. This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensators, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients, ripple rejection and the power consumption are very similar to the results from the abstract model.</p><p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVBA130LT3G) and op-amps (NCV20071), as well as the passive inductor (MSS1583-105KE_) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p><p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models. For example, the stress indicator for the power inductor shows that the maximum RMS current level is exceeded under this simulated operating condition (i.e. stress_ratio_current_rms > 1.0).</p><p>The companion design, "TDFS Loop Stability for Buck DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterNCV20071 Op-AmpNRVBA130LT3G Schottky Power RectifierMSS1583-105KE_ Power InductorPEG127KA3110Q Electrolytic Capacitor Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -