Copy of LVDT Position Sensing System - on Wed, 12/02/2020 - 12:02 Designer236951 × Member for 5 years 1 month 6 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/386037 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/386037"></iframe> Title Description <p>A Linear Variable Differential Transformer (LVDT) and analog signal conditioning circuit are used for a position sensing system. An oscillator provides a sinusoidal excitation signal to the primary winding of the LVDT. The differential secondary winding outputs are rectified and low-pass filtered. The difference voltage, which is proportional to the mechanical displacement of the LVDT core, is the measurement result.</p> <p>This virtual prototype can be used to select the low pass filter frequency, so it is low enough that the oscillation frequency is mostly removed from the output signal, yet high enough to track the natural frequency of mechanical system the sensor is intended to measure. It can also be used to analyze parasitic effects, such as the resistance of the wires connecting the sensor to the signal conditioning circuits. This resistance affects the output voltage and therefore corrupts the measurement results. Likewise, the non-linear behavior of the rectifier diodes affects the linearity of the position measurement.This can be seen if the force input is slowly ramped from -1000N to 1000N over a 1 second interval.</p> About text formats Tags LVDTDisplacement sensorPosition sensorrectifierMechatronicsMotion Control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of LVDT Position Sensing System - on Wed, 12/02/2020 - 12:02 Designer236951 × Member for 5 years 1 month 6 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/386036 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/386036"></iframe> Title Description <p>A Linear Variable Differential Transformer (LVDT) and analog signal conditioning circuit are used for a position sensing system. An oscillator provides a sinusoidal excitation signal to the primary winding of the LVDT. The differential secondary winding outputs are rectified and low-pass filtered. The difference voltage, which is proportional to the mechanical displacement of the LVDT core, is the measurement result.</p> <p>This virtual prototype can be used to select the low pass filter frequency, so it is low enough that the oscillation frequency is mostly removed from the output signal, yet high enough to track the natural frequency of mechanical system the sensor is intended to measure. It can also be used to analyze parasitic effects, such as the resistance of the wires connecting the sensor to the signal conditioning circuits. This resistance affects the output voltage and therefore corrupts the measurement results. Likewise, the non-linear behavior of the rectifier diodes affects the linearity of the position measurement.This can be seen if the force input is slowly ramped from -1000N to 1000N over a 1 second interval.</p> About text formats Tags LVDTDisplacement sensorPosition sensorrectifierMechatronicsMotion Control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of LVDT Position Sensing System - on Wed, 12/02/2020 - 12:02 Designer236951 × Member for 5 years 1 month 6 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/386036 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/386036"></iframe> Title Description <p>A Linear Variable Differential Transformer (LVDT) and analog signal conditioning circuit are used for a position sensing system. An oscillator provides a sinusoidal excitation signal to the primary winding of the LVDT. The differential secondary winding outputs are rectified and low-pass filtered. The difference voltage, which is proportional to the mechanical displacement of the LVDT core, is the measurement result.</p> <p>This virtual prototype can be used to select the low pass filter frequency, so it is low enough that the oscillation frequency is mostly removed from the output signal, yet high enough to track the natural frequency of mechanical system the sensor is intended to measure. It can also be used to analyze parasitic effects, such as the resistance of the wires connecting the sensor to the signal conditioning circuits. This resistance affects the output voltage and therefore corrupts the measurement results. Likewise, the non-linear behavior of the rectifier diodes affects the linearity of the position measurement.This can be seen if the force input is slowly ramped from -1000N to 1000N over a 1 second interval.</p> About text formats Tags LVDTDisplacement sensorPosition sensorrectifierMechatronicsMotion Control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of PID Speed Control Loop - Switching - on Tue, 12/01/2020 - 18:08 Designer236944 × Member for 5 years 1 month 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/385957 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/385957"></iframe> Title Description <p>This example shows a more detailed circuit- and logic-level implementation of the PID Control Loop shown in the companion example, “PID Speed Control Loop – Continuous”. The ideal motor drive block of the “Continuous” version is expanded here, to include both a H-bridge motor drive, and also the digital logic necessary for converting the continuous PID controller output into the desired PWM signals that are distributed to drive the gates of the power MOSFET switches. The MOSFET model was calibrated to represent an IRF3710, using only information published on the manufacturer’s datasheet.</p> <p>The rest of the system, including the PID block-diagram controller, the mechanical fan load and the DC Motor characterized to represent an FRC (First Robotics Competition) CIM Motor, are the same as in the Continuous version. While the simulation time for this switching version is significantly longer, more detailed information about practical circuit performance and component sizing is available. For example, the fan speed step response is somewhat different from the conceptual design, because of the losses in the MOSFETs under high current conditions, as well as voltage drop in the battery. Also, information regarding component stress levels within the “datasheet specified” MOSFETs and Diodes is provided.</p> About text formats Tags PID ControlDC motorFRCCIM MotorPWMMOSFET H-BridgeIRF3710component stressMechatronicsRobotics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of PID Speed Control Loop - Continuous crane base - 2 - on Thu, 11/19/2020 - 13:25 Designer236538 × Member for 5 years 2 months 35 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/380474 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/380474"></iframe> Title Description <p>This example shows a concept development phase version of a fan speed control loop. It uses a PID-based (Proportional, Integral and Derivative) control strategy, with continuous block-diagram representation for both the controller and the voltage drive for the DC motor.</p> <p>The motor, which is characterized to represent an FRC (First Robotics Competition) CIM Motor, and the attached mechanical fan load, use a conservation-based modeling approach. Both the static and dynamic interaction characteristics “emerge” naturally from the model, simply because they are “connected” on the schematic. This approach to system modeling is much like assembling a hardware prototype, and does not require the user to develop an analytical model of the “plant” being controlled. Additional external electrical circuit components, mechanical loads and other “physical” elements can easily be added by simply placing them on the schematic and “wiring” them together. In fact, a more detailed implementation of the motor drive is shown in the companion example, “PID Speed Control Loop – Switching”. In that example, a design for the logic and power electronics needed to implement a PWM-based, switched MOSFET H-bridge drive is included.</p> <p>Because this version simulates very quickly compared to the switching version, it is well suited for early concept validation of the control strategy and PID tuning, loop stability and frequency response analysis, etc.</p> About text formats Tags PID ControlDC motorFRCCIM MotorMechatronicsRobotics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Loudspeaker with Simple Amplifier - on Thu, 11/19/2020 - 13:15 Designer236538 × Member for 5 years 2 months 35 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/380466 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/380466"></iframe> Title Description <p>This "Live" example design includes a simple analog electronic amplifier, intended only to demonstrates the importance of multi-discipline system modeling.</p> <p>A swept frequency response test, from 40 Hz to 1000 Hz, shows the effect of the complex amplifier loading by the voice-coil and speaker-cone dynamics*. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency (60 Hz). The loudspeaker reaches its minimum impedance around 600 Hz, or at 0.6 seconds where the peak load current is observed.</p> <p>The simulation results also show that the average power (q1/npn/pwr_avg) in the BDP947 BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The red "hot part monitor", with the junction to ambient thermal resistance set to 10 C/Watt, as given in the datasheet, shows the part temperature rising to over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p> <p>All of the parameters in blue can be changed by the user and a new simulation run. The updated scope waveform results will show the effect of that change. You can change the electrical resistance and inductance of the voice-coil, as well as the speaker cone mass and linear spring rate that affect the resonance frequency.</p> <p>* Note: Please refer to this companion example, that shows the input impedance frequency response of the loudspeaker alone:</p> <p>https://www.systemvision.com/design/loudspeaker-only-frequency-response</p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronicsmagnetic actuator Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of LVDT Position Sensing System - on Mon, 11/16/2020 - 19:15 Designer237179 × Member for 5 years 1 month 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/378998 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/378998"></iframe> Title Description <p>A Linear Variable Differential Transformer (LVDT) and analog signal conditioning circuit are used for a position sensing system. An oscillator provides a sinusoidal excitation signal to the primary winding of the LVDT. The differential secondary winding outputs are rectified and low-pass filtered. The difference voltage, which is proportional to the mechanical displacement of the LVDT core, is the measurement result.</p> <p>This virtual prototype can be used to select the low pass filter frequency, so it is low enough that the oscillation frequency is mostly removed from the output signal, yet high enough to track the natural frequency of mechanical system the sensor is intended to measure. It can also be used to analyze parasitic effects, such as the resistance of the wires connecting the sensor to the signal conditioning circuits. This resistance affects the output voltage and therefore corrupts the measurement results. Likewise, the non-linear behavior of the rectifier diodes affects the linearity of the position measurement.This can be seen if the force input is slowly ramped from -1000N to 1000N over a 1 second interval.</p> About text formats Tags LVDTDisplacement sensorPosition sensorrectifierMechatronicsMotion Control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of LVDT Position Sensing System - on Mon, 11/16/2020 - 19:15 Designer237179 × Member for 5 years 1 month 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/378998 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/378998"></iframe> Title Description <p>A Linear Variable Differential Transformer (LVDT) and analog signal conditioning circuit are used for a position sensing system. An oscillator provides a sinusoidal excitation signal to the primary winding of the LVDT. The differential secondary winding outputs are rectified and low-pass filtered. The difference voltage, which is proportional to the mechanical displacement of the LVDT core, is the measurement result.</p> <p>This virtual prototype can be used to select the low pass filter frequency, so it is low enough that the oscillation frequency is mostly removed from the output signal, yet high enough to track the natural frequency of mechanical system the sensor is intended to measure. It can also be used to analyze parasitic effects, such as the resistance of the wires connecting the sensor to the signal conditioning circuits. This resistance affects the output voltage and therefore corrupts the measurement results. Likewise, the non-linear behavior of the rectifier diodes affects the linearity of the position measurement.This can be seen if the force input is slowly ramped from -1000N to 1000N over a 1 second interval.</p> About text formats Tags LVDTDisplacement sensorPosition sensorrectifierMechatronicsMotion Control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Loudspeaker with Simple Amplifier - on Sun, 11/15/2020 - 06:24 Designer197752 × Member for 7 years 9 months 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/378560 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/378560"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p> <p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p> <p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself.</p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -