Copy of A Verification Platform for CAN and CAN FD Signal Quality - on Tue, 01/28/2020 - 20:34 Designer229314 × Member for 5 years 2 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/279651 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/279651"></iframe> Title Description <p>This 4-node CAN network model is an extensible platform for analyzing network signal quality. The network configuration can be easily modified to represent multiple design variants. This can include transmission line lengths and characteristics, termination impedance and placement, transceiver drive strength and edge-rates, etc. New nodes can easily be added. All of these configurations can be simulated and signal integrity verified.</p><p>In the particular configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission lineCAN FD Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of A Verification Platform for CAN and CAN FD Signal Quality - on Tue, 01/28/2020 - 20:34 Designer229314 × Member for 5 years 2 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/279646 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/279646"></iframe> Title Description <p>This 4-node CAN network model is an extensible platform for analyzing network signal quality. The network configuration can be easily modified to represent multiple design variants. This can include transmission line lengths and characteristics, termination impedance and placement, transceiver drive strength and edge-rates, etc. New nodes can easily be added. All of these configurations can be simulated and signal integrity verified.</p><p>In the particular configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission lineCAN FD Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of A Verification Platform for CAN and CAN FD Signal Quality - on Tue, 01/28/2020 - 20:34 Designer229314 × Member for 5 years 2 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/279646 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/279646"></iframe> Title Description <p>This 4-node CAN network model is an extensible platform for analyzing network signal quality. The network configuration can be easily modified to represent multiple design variants. This can include transmission line lengths and characteristics, termination impedance and placement, transceiver drive strength and edge-rates, etc. New nodes can easily be added. All of these configurations can be simulated and signal integrity verified.</p><p>In the particular configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission lineCAN FD Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of A Verification Platform for CAN and CAN FD Signal Quality - on Tue, 01/28/2020 - 20:34 Designer229314 × Member for 5 years 2 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/279645 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/279645"></iframe> Title Description <p>This 4-node CAN network model is an extensible platform for analyzing network signal quality. The network configuration can be easily modified to represent multiple design variants. This can include transmission line lengths and characteristics, termination impedance and placement, transceiver drive strength and edge-rates, etc. New nodes can easily be added. All of these configurations can be simulated and signal integrity verified.</p><p>In the particular configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission lineCAN FD Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of A Verification Platform for CAN and CAN FD Signal Quality - on Tue, 01/28/2020 - 20:34 Designer229314 × Member for 5 years 2 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/279645 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/279645"></iframe> Title Description <p>This 4-node CAN network model is an extensible platform for analyzing network signal quality. The network configuration can be easily modified to represent multiple design variants. This can include transmission line lengths and characteristics, termination impedance and placement, transceiver drive strength and edge-rates, etc. New nodes can easily be added. All of these configurations can be simulated and signal integrity verified.</p><p>In the particular configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission lineCAN FD Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of A Verification Platform for CAN and CAN FD Signal Quality - on Tue, 01/28/2020 - 20:34 Designer229314 × Member for 5 years 2 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/279593 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/279593"></iframe> Title Description <p>This 4-node CAN network model is an extensible platform for analyzing network signal quality. The network configuration can be easily modified to represent multiple design variants. This can include transmission line lengths and characteristics, termination impedance and placement, transceiver drive strength and edge-rates, etc. New nodes can easily be added. All of these configurations can be simulated and signal integrity verified.</p><p>In the particular configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission lineCAN FD Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of A Verification Platform for CAN and CAN FD Signal Quality - on Tue, 01/28/2020 - 20:34 Designer229314 × Member for 5 years 2 months 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/279593 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/279593"></iframe> Title Description <p>This 4-node CAN network model is an extensible platform for analyzing network signal quality. The network configuration can be easily modified to represent multiple design variants. This can include transmission line lengths and characteristics, termination impedance and placement, transceiver drive strength and edge-rates, etc. New nodes can easily be added. All of these configurations can be simulated and signal integrity verified.</p><p>In the particular configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission lineCAN FD Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of CAN Network Signaling - on Mon, 01/20/2020 - 17:28 Designer32 × Member for 11 years 2 months 19 designs 2 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/278703 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/278703"></iframe> Title Description <p>This 4-node CAN network model is a "Live" design, meaning the user can change or "tune" various parameters shown in blue, and then run a new simulation to see the corresponding change in the signals received at each CAN node. These "tunable" parameters include the transmission line lengths, termination and choke parameter values, as well as select which of the CAN nodes is the transmitter.</p> <p>In the network configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect. One interesting change the user can make is to set the choke inductance values to 0.0, effectively removing the choke from the network, and note the increase in the even-mode voltage wave on the adjacent transmission line.</p> <p>The user can also save a copy of this design and enjoy full editing capability of the network configuration.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission line Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
CAN Network Signaling Designer227945 × Member for 5 years 3 months 8 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/277289 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/277289"></iframe> Title Description <p>This 4-node CAN network model is a "Live" design, meaning the user can change or "tune" various parameters shown in blue, and then run a new simulation to see the corresponding change in the signals received at each CAN node. These "tunable" parameters include the transmission line lengths, termination and choke parameter values, as well as select which of the CAN nodes is the transmitter. </p><p>In the network configuration shown, the parasitic capacitance at Node 4 causes asymmetric transitions. This asymmetry would normally result in EMI-causing even-mode propagating currents on the transmission lines, but the choke greatly reduces this effect. One interesting change the user can make is to set the choke inductance values to 0.0, effectively removing the choke from the network, and note the increase in the even-mode voltage wave on the adjacent transmission line.</p><p>The user can also save a copy of this design and enjoy full editing capability of the network configuration.</p> About text formats Tags CANSignal IntegrityEMITransceiverchoketransmission line Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Buck Converter PWM Modulator Line Transient Demo Designer43361 × Member for 8 years 11 months 328 designs 2 groups https://explore.partquest.com/node/268620 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/268620"></iframe> Title Description <p>Here's my attempt to model the PWM modulator in the frequency domain. It's a buck converterr switching at 200KHz. I use the advanced options to specify a linear frequency sweep, which includes harmonics of the switching frequency. There's a line frequency disturbance that modulates steady state response. Please note that my modulator model is only valid for voltage mode control.</p> <p>The line voltage is disturbed by bursts of pulses. The disturbance passes through to the output voltage. You can select different frequency ranges by adding and removing Spice comment indicators in the simulation controls.</p> <p>Compare results to Mike's TDFS analysis.</p> <p>This version is under test to determine its accuracy and faithfulness to the actual switching characteristics.</p> <p>[1] See Vorperian's "Simplified Analysis of PWM Converters Using Model of PWM Switch Part 1" in the May 1990 issue (Vol. 26, No. 3) of the IEEE Transactions on Aerospace and Electronic Systems.</p> About text formats Tags Buck ConverterSwitching ConverterStep-DownSpectral Source QuantitiesEMI Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -