Copy of ServoDC_PID_continuo (position) - on Mon, 12/02/2024 - 10:14 Designer260026 × Member for 3 months 4 weeks 4 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/680633 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/680633"></iframe> Title Description About text formats Tags PID ControlDC motorFRCCIM MotorPWMMOSFET H-BridgeIRF3710component stressMechatronicsRoboticsrobot control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Step-Down (Buck) DC to DC Converter - Switching - on Thu, 09/26/2024 - 17:57 Designer258679 × Member for 6 months 8 designs 2 groups Welcome to the community!! https://explore.partquest.com/node/672563 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/672563"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p> <p>https://explore.partquest.com/node/128081</p> <p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Mon, 09/02/2024 - 09:25 Designer258183 × Member for 6 months 4 weeks 1 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/669514 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/669514"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example: “Step-Down (Buck) DC to DC Converter - Continuous”. This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Mon, 08/26/2024 - 12:53 Designer258070 × Member for 7 months 6 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/668668 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/668668"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example: “Step-Down (Buck) DC to DC Converter - Continuous”. This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of ServoDC_PID_continuo (position) - on Mon, 08/19/2024 - 00:40 Designer257893 × Member for 7 months 1 week 3 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/665951 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/665951"></iframe> Title Description About text formats Tags PID ControlDC motorFRCCIM MotorPWMMOSFET H-BridgeIRF3710component stressMechatronicsRoboticsrobot control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of ServoDC_PID_continuo (position) - on Mon, 08/19/2024 - 00:12 Designer257893 × Member for 7 months 1 week 3 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/665935 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/665935"></iframe> Title Description About text formats Tags PID ControlDC motorFRCCIM MotorPWMMOSFET H-BridgeIRF3710component stressMechatronicsRoboticsrobot control Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Mon, 07/08/2024 - 19:43 Designer257299 × Member for 8 months 3 weeks 18 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/661670 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/661670"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example: “Step-Down (Buck) DC to DC Converter - Continuous”. This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of PID Speed Control Loop - Switching compact - on Fri, 06/14/2024 - 12:23 Designer256884 × Member for 9 months 3 weeks 5 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/660352 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/660352"></iframe> Title Description <p>This example shows a more detailed circuit- and logic-level implementation of the PID Control Loop shown in the companion example, “PID Speed Control Loop – Continuous”. The ideal motor drive block of the “Continuous” version is expanded here, to include both a H-bridge motor drive, and also the digital logic necessary for converting the continuous PID controller output into the desired PWM signals that are distributed to drive the gates of the power MOSFET switches. The MOSFET model was calibrated to represent an IRF3710, using only information published on the manufacturer’s datasheet.</p> <p>The rest of the system, including the PID block-diagram controller, the mechanical fan load and the DC Motor characterized to represent an FRC CIM Motor, are the same as in the Continuous version. While the simulation time for this switching version is significantly longer, more detailed information about practical circuit performance and component sizing is available. For example, the fan speed step response is somewhat different from the conceptual design, because of the losses in the MOSFETs under high current conditions, as well as voltage drop in the battery. Also, information regarding component stress levels within the “datasheet specified” MOSFETs and Diodes is provided.</p> About text formats Tags PID ControlDC motorFRCCIM MotorPWMMOSFET H-BridgeIRF3710component stress Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Tue, 04/23/2024 - 12:39 Designer246867 × Member for 1 year 10 months 4 designs 1 groups I'm a member of the PartQuest Explore community. https://explore.partquest.com/node/648273 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/648273"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example: “Step-Down (Buck) DC to DC Converter - Continuous”. This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Buck DC to DC Converter - Switching Designer255304 × Member for 1 year 1 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/644184 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/644184"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example: “Step-Down (Buck) DC to DC Converter - Continuous”. This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -