Battery charging circuit part 3 Designer10 × Member for 12 years 623 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/7046 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/7046"></iframe> Title Description <p>Battery charging circuit for lithium ion battery. This is derived from a www.Silego.com GreenPak 2 application note. </p><p>Includes model of lithium ion battery.</p> About text formats Tags Batterycharging circuitBuck Converterlithium ionGreenPak 2Silego Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
NaS Simulation Model - Adam Designer30 × Member for 11 years 11 months 188 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/6951 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/6951"></iframe> Title Description <p>This circuit will model a NaS cell voltage. The model is a circuit created by Darrell Teegarden for LiFePO4 battery and will be or has been altered to model and NaS battery system.</p><p>Based off of the model described in:</p><p>Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives; 2009, Xiaochuan Lu, Guanguang Xia, John P. Lemmon, Zhenguo Yang∗</p><p>Retrieved 1-18-2015 from Journal of Power Sources 195 (2010) 2431–2442 (via PSU Library).</p><p>parameters: (below params for LiFePO4, need params for NaS)</p><p>initial SOC [no units] (0.0 - 1.0) (</p><p>initial charge capacity [Coulombs] (> 0.0)(</p> About text formats Tags Batterystate-of-chargeNaS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Battery charging circuit part 2 Designer10 × Member for 12 years 623 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/6036 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/6036"></iframe> Title Description <p>Battery charging circuit for lithium ion battery. This is derived from a www.Silego.com GreenPak 2 application note. </p> About text formats Tags Batterycharging circuitBuck Converterlithium ionGreenPak 2 Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Battery charging circuit part 1 Designer10 × Member for 12 years 623 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/5776 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/5776"></iframe> Title Description <p>Battery charging circuit for lithium ion battery. This is derived from a www.Silego.com GreenPak 2 application note. </p> About text formats Tags Batterycharging circuitBuck Converterlithium ionGreenPak 2 Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Battery charging circuit Designer10 × Member for 12 years 623 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/5771 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/5771"></iframe> Title Description About text formats Tags Battery Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
PWM lamp controller Designer10 × Member for 12 years 623 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/5486 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/5486"></iframe> Title Description <p>Application circuit using a GreenPak 2 configurable mixed-signal array. This array has been configured to implement a voltage-to-PWM function. This is then used to control a lamp, powered by a Lithium Ion battery.</p> About text formats Tags PWMlampBatterySilegoGreenPak 2 Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
LiFePO4 battery cell Designer30 × Member for 11 years 11 months 188 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/1326 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/1326"></iframe> Title Description <p>This circuit models a LiFePO4 cell voltage.</p><p>Based off of the model described in:</p><p>Liao Chenglin; Li Huiju; Wang Lifang, "A dynamic equivalent circuit model of LiFePO4 cathode material for lithium ion batteries on hybrid electric vehicles," Vehicle Power and Propulsion Conference, 2009. VPPC '09. IEEE , vol., no., pp.1662,1665, 7-10 Sept. 2009</p><p>doi: 10.1109/VPPC.2009.5289681</p><p>see also http://www.systemvision.com/design/dynamic-equivalent-circuit-model-lifepo4-batteries</p><p>parameters: </p><p>initial SOC [no units] (0.0 - 1.0)</p><p>initial charge capacity [Coulombs] (> 0.0)</p> About text formats Tags LiFePO4Batterystate-of-charge Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
LiFePo4 battery cell Designer10 × Member for 12 years 623 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/737 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/737"></iframe> Title Description <p>This circuit models a Li-Ion (LiFePo4) battery</p><p>Based on the following paper:</p><p>Marek MICHALCZUK1, Bartłomiej UFNALSKI2, Lech M. GRZESIAK2, Piotr RUMNIAK2</p><p>Politechnika Warszawska, Instytut Automatyki i Robotyki (1), Instytut Sterowania i Elektroniki Przemysłowej (2)</p><p>Power converter-based electrochemical battery emulator</p><p>http://pe.org.pl/articles/2014/7/3.pdf</p><p>Status:</p><p>This model replicates figure 6 in the above paper, with the addition of modeling a variable number of cells. </p><p>The number of cells modeled can be changed by modifying the blocks:</p><p>NCELLS_const & NCELLS_reciprocal_const</p><p>Modify the values of these blocks to the number of cells and reciprocal of the number of cells, respectively.</p><p>The model is calibrated for a single 40Ah battery cell (specifically, WB-LYP40AHA). This 40Ah calibration is represented by parameters values of 4 different blocks: </p><p> I_meas</p><p> Rsn_const</p><p> C1_const</p><p> R1_const </p><p>To calibrate for a given cell capacity, Capacity_cell [Ah], modify the parameters according to these relationships:</p><p> I_meas.K = </p><p> 1/(Capacity_cell[Ah]*3600[s])</p><p> Rsn_const.OUTPUT_LEVEL = </p><p> 3.1E-3[Ohm]*Capacity_cell[Ah]/40[Ah]</p><p> R1_const.OUTPUT_LEVEL = </p><p> 1.9E-3[Ohm]*Capacity_cell[Ah]/40[Ah]</p><p> C1_const.OUTPUT_LEVEL = </p><p> 22.75E3[Farad]*Capacity_cell[Ah]/40[Ah]</p> About text formats Tags Batterystate-of-chargeLi-IonLiFePO4WB-LYP40AHA Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Lithium battery test 1 Designer10 × Member for 12 years 623 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/715 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/715"></iframe> Title Description <p>The battery models the anode as a porous substrate that is plated with a metal and then filled with lithium. The resistance of the metal is calculated from the resistivity of the metal (an input parameter). The battery capacity is calculated assuming that the lithium is the limiting reactant.</p><p>The open circuit voltage is modeled as a function of state-of-charge (Nerst equation).</p><p>Three loss mechanisms are included:</p><p>(1) Activation voltage drop (Tafel equation)</p><p>(2) Ohmic losses (resistivity of substrate and plating)</p><p>(3) Transport losses (empirical) </p><p>surface charge storage is modeled as a time delay between the instantaneous activation voltage and the effective activation voltage.</p> About text formats Tags LithiumBatterystate-of-charge Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Lithium battery test 1 Designer220 × Member for 10 years 8 months 3 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/714 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/714"></iframe> Title Description <p>The battery models the anode as a porous substrate that is plated with a metal and then filled with lithium. The resistance of the metal is calculated from the resistivity of the metal (an input parameter). The battery capacity is calculated assuming that the lithium is the limiting reactant.</p><p>The open circuit voltage is modeled as a function of state-of-charge (Nerst equation).</p><p>Three loss mechanisms are included:</p><p>(1) Activation voltage drop (Tafel equation)</p><p>(2) Ohmic losses (resistivity of substrate and plating)</p><p>(3) Transport losses (empirical) </p><p>surface charge storage is modeled as a time delay between the instantaneous activation voltage and the effective activation voltage.</p> About text formats Tags LithiumBatterystate-of-charge Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -