Step-Down (Buck) DC to DC Converter - Switching Designer19 × 0 designs 10 groups Member of the PartQuest Explore Development Team. Focused on modeling and simulation of analog, mixed-signal and multi-discipline systems covering a broad range of applications, including power electronics, controls and mechatronic systems. https://explore.partquest.com/node/128496 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/128496"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p> <p>https://explore.partquest.com/node/128081</p> <p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Fri, 02/06/2026 - 16:29 Designer248172 × 0 designs 2 groups Welcome to the community!! https://explore.partquest.com/node/704111 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/704111"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p><p>https://explore.partquest.com/node/128081</p><p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p><p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p><p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p><p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of TDFS Loop Stability for Step-Down DC to DC (Buck) Converter - Switching - on Thu, 01/22/2026 - 15:10 Designer230346 × 0 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/703307 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/703307"></iframe> Title Description <p>This example demonstrates the TDFS (Time Domain Frequency Sweep) Loop Stability Instrument Model. It is used to compute the open-loop transfer function of an operating (closed-loop) switching power converter. There is no need for state-average or continuous equivalent models for the modulator section of the design, as normally needed for frequency-domain (or "AC") analysis. Rather, the actual circuit component models can be used directly, because the open-loop transfer function is computed from time-domain simulation results.</p><p>In this case, the converter is operating at 200kHz switching frequency, and is converting the 12V DC input to a regulated 5V output, while supplying a 5A current to the 1 Ohm load resistor. The TDFS measurement instrument indicates that the open-loop gain crossover frequency is at 26 kHz, and the phase margin is just under 60 degrees. This verifies that the opamp-based lead-lag compensator is providing adequate stability margin under these operating conditions.</p><p>Note that the TDFS instrument model characterizes the open loop transfer function by injecting a small sinusoidal stimulus signal in series with the loop, and then measures the complex ratio of the return signal to the injected signal, is described in:</p><p>D. Venable, “Testing Power Sources for Stability”, Venable technical paper #1, Venable Industries.</p><p>The companion example, "Step-Down (Buck) DC to DC Converter - Switching", shows the line and load transient response of this converter design. Another companion example, "Step-Down (Buck) DC to DC Converter - Continuous", uses a state-average model of the switching (or modulator) section of the converter, so it supports traditional "AC" or frequency-domain analysis.</p> About text formats Tags Buck ConverterOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorNRVTS560EMFS Schottky Power RectifierStep-Down Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Wed, 10/29/2025 - 11:13 Designer264029 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/698637 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/698637"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p><p>https://explore.partquest.com/node/128081</p><p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p><p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p><p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p><p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Tue, 10/21/2025 - 22:56 Designer262802 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/698289 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/698289"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p><p>https://explore.partquest.com/node/128081</p><p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p><p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p><p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p><p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Thu, 10/16/2025 - 22:32 Designer255461 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/698130 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/698130"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p><p>https://explore.partquest.com/node/128081</p><p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p><p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p><p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p><p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Sat, 09/20/2025 - 15:37 Designer259698 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/697067 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/697067"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p> <p>https://explore.partquest.com/node/128081</p> <p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Wed, 03/05/2025 - 20:31 Designer261739 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/691907 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/691907"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p> <p>https://explore.partquest.com/node/128081</p> <p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Wed, 02/26/2025 - 09:11 Designer261543 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/691349 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/691349"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p> <p>https://explore.partquest.com/node/128081</p> <p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Copy of Step-Down (Buck) DC to DC Converter - Switching - on Tue, 02/25/2025 - 22:14 Designer261543 × 0 designs 1 groups Welcome to the community!! https://explore.partquest.com/node/691217 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/691217"></iframe> Title Description <p>This design is a detailed circuit implementation of the more abstract "state-average" buck converter model shown in the companion design example "Step-Down (Buck) DC to DC Converter - Continuous” you can find here:</p> <p>https://explore.partquest.com/node/128081</p> <p>This example includes the low-pass voltage sense circuit, an op-amp implementation of the difference amplifier and the lead-lag compensator, as well as PWM switching control of a power MOSFET. Simulation results for the line and load transients are very similar to the results from the continuous model.</p> <p>This design uses a number of "datasheet characterized" components, including the power MOSFET (MCH6337), freewheel diode (NRVTS560EMFS) and op-amps (MC33272A), as well as the soft-saturation inductor (XAL6060-223) and capacitor (PEG127KA3110Q) of the power stage . The parameter values of these devices were entered directly from the datasheet for the corresponding part, including the "Maximum Ratings" information.</p> <p>While the simulation time for this switching circuit is significantly longer than for the abstract model, more detailed information about the circuit’s signals and components is available. This includes the component stress levels, which are monitored within all the "datasheet" models.</p> <p>The companion design, "TDFS Loop Stability for Step-Down (Buck) DC to DC Converter - Switching", demonstrates a method to directly assess the open-loop frequency response, and hence the stability margin, of this converter. The TDFS (Time Domain Frequency Sweep) method circumvents the need for state-average models of the switching elements.</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorMBRA130LT3G DiodeMCH6337 Power MOSFET Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -