curreent mode Boost DC to DC Converter SR- Switching with slope 瀧澤登Designer123146 × 瀧澤登 Member for 7 years 6 months 365 designs 3 groups https://explore.partquest.com/node/268038 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/268038"></iframe> Title Description About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
curreent mode Boost DC to DC Converter DFF- Switching with out slope 瀧澤登Designer123146 × 瀧澤登 Member for 7 years 6 months 365 designs 3 groups https://explore.partquest.com/node/267921 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/267921"></iframe> Title Description About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
curreent mode Buck DC to DC Converter DFF- Switching with slope 瀧澤登Designer123146 × 瀧澤登 Member for 7 years 6 months 365 designs 3 groups https://explore.partquest.com/node/267909 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/267909"></iframe> Title Description About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
curreent mode Buck DC to DC Converter DFF- Switching with out slope 瀧澤登Designer123146 × 瀧澤登 Member for 7 years 6 months 365 designs 3 groups https://explore.partquest.com/node/267895 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/267895"></iframe> Title Description About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
curreent mode Buck DC to DC Converter DFF- Switching 瀧澤登Designer123146 × 瀧澤登 Member for 7 years 6 months 365 designs 3 groups https://explore.partquest.com/node/267836 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/267836"></iframe> Title Description About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
TDFS Loop Stability for curreent mode Buck DC to DC Converter - Switching 瀧澤登Designer123146 × 瀧澤登 Member for 7 years 6 months 365 designs 3 groups https://explore.partquest.com/node/267834 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/267834"></iframe> Title Description <p>This design demonstrates the use of the TDFS (Time Domain Frequency Sweep) simulation method, to measure the open-loop frequency response of an operating closed-loop system containing switching elements.</p><p>The stability of the "Buck DC to DC Converter - Switching" design is assessed. This is a switching circuit, it does not use a state-average model for the modulator, so the standard AC Analysis method cannot be used. Rather, the frequency response is generated from time-domain simulation results. The TDFS approach can also be used for systems that contain sampling or digital control aspects.</p><p>This particular example is directly comparable to the design titled "TDFS Loop Stability for Buck DC to DC Converter - State Average". In that design, both the TDFS and AC Analysis methods are used to measure the open loop transfer function of an equivalent non-switching circuit.</p><p>Note that the approach used to characterize the loop stability, by injecting a small sinusoidal stimulus signal in series with the loop and then measuring the complex ratio of the ground referenced return signal to the injected signal, is described in:</p><p>D. Venable, “Testing Power Sources for Stability”, Venable technical paper #1, Venable Industries</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
TDFS Loop Stability for Buck DC to DC Converter - Switching NormDesigner43361 × Norm Member for 8 years 7 months 328 designs 2 groups https://explore.partquest.com/node/264927 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/264927"></iframe> Title Description <p>This design demonstrates the use of the TDFS (Time Domain Frequency Sweep) simulation method, to measure the open-loop frequency response of an operating closed-loop system containing switching elements.</p><p>The stability of the "Buck DC to DC Converter - Switching" design is assessed. This is a switching circuit, it does not use a state-average model for the modulator, so the standard AC Analysis method cannot be used. Rather, the frequency response is generated from time-domain simulation results. The TDFS approach can also be used for systems that contain sampling or digital control aspects.</p><p>This particular example is directly comparable to the design titled "TDFS Loop Stability for Buck DC to DC Converter - State Average". In that design, both the TDFS and AC Analysis methods are used to measure the open loop transfer function of an equivalent non-switching circuit.</p><p>Note that the approach used to characterize the loop stability, by injecting a small sinusoidal stimulus signal in series with the loop and then measuring the complex ratio of the ground referenced return signal to the injected signal, is described in:</p><p>D. Venable, “Testing Power Sources for Stability”, Venable technical paper #1, Venable Industries</p> About text formats Tags Buck Convertercomponent stressOp-Amp Lead-Lag CompensatorSwitching ConverterNCV20071 Op-AmpNRVBA130LT3G Schottky Power RectifierMSS1583-105KE_ Power InductorPEG127KA3110Q Electrolytic CapacitorTDFS Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Buck Converter with Vorperian Switch v2.1 NormDesigner43361 × Norm Member for 8 years 7 months 328 designs 2 groups https://explore.partquest.com/node/263418 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/263418"></iframe> Title Description <p>Mike Donnelly's buck converter example configured with an averaged switch as per Vatche Vorperian to be extended to EMI frequencies.</p> About text formats Tags Buck ConverterOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorNRVTS560EMFS Schottky Power RectifierStep-Down Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Norm's aliasing demo - Mike's topology NormDesigner43361 × Norm Member for 8 years 7 months 328 designs 2 groups https://explore.partquest.com/node/256149 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/256149"></iframe> Title Description <p>This example demonstrates the TDFS (Time Domain Frequency Sweep) Loop Stability Instrument Model. It is used to compute the open-loop transfer function of an operating (closed-loop) switching power converter. There is no need for state-average or continuous equivalent models for the modulator section of the design, as normally needed for frequency-domain (or "AC") analysis. Rather, the actual circuit component models can be used directly, because the open-loop transfer function is computed from time-domain simulation results.</p><p>In this case, the converter is operating at 200kHz switching frequency, and is converting the 12V DC input to a regulated 5V output, while supplying a 5A current to the 1 Ohm load resistor. The TDFS measurement instrument indicates that the open-loop gain crossover frequency is at 26 kHz, and the phase margin is just under 60 degrees. This verifies that the opamp-based lead-lag compensator is providing adequate stability margin under these operating conditions.</p><p>Note that the TDFS instrument model characterizes the open loop transfer function by injecting a small sinusoidal stimulus signal in series with the loop, and then measures the complex ratio of the return signal to the injected signal, is described in:</p><p>D. Venable, “Testing Power Sources for Stability”, Venable technical paper #1, Venable Industries.</p><p>The companion example, "Step-Down (Buck) DC to DC Converter - Switching", shows the line and load transient response of this converter design. Another companion example, "Step-Down (Buck) DC to DC Converter - Continuous", uses a state-average model of the switching (or modulator) section of the converter, so it supports traditional "AC" or frequency-domain analysis.</p> About text formats Tags Buck ConverterOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorNRVTS560EMFS Schottky Power RectifierStep-Down Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
SMSSA Theory - Test rev 2 Baseline NormDesigner43361 × Norm Member for 8 years 7 months 328 designs 2 groups https://explore.partquest.com/node/254142 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/254142"></iframe> Title Description <p>This example demonstrates the TDFS (Time Domain Frequency Sweep) Loop Stability Instrument Model. It is used to compute the open-loop transfer function of an operating (closed-loop) switching power converter. There is no need for state-average or continuous equivalent models for the modulator section of the design, as normally needed for frequency-domain (or "AC") analysis. Rather, the actual circuit component models can be used directly, because the open-loop transfer function is computed from time-domain simulation results.</p><p>In this case, the converter is operating at 200kHz switching frequency, and is converting the 12V DC input to a regulated 5V output, while supplying a 5A current to the 1 Ohm load resistor. The TDFS measurement instrument indicates that the open-loop gain crossover frequency is at 26 kHz, and the phase margin is just under 60 degrees. This verifies that the opamp-based lead-lag compensator is providing adequate stability margin under these operating conditions.</p><p>Note that the TDFS instrument model characterizes the open loop transfer function by injecting a small sinusoidal stimulus signal in series with the loop, and then measures the complex ratio of the return signal to the injected signal, is described in:</p><p>D. Venable, “Testing Power Sources for Stability”, Venable technical paper #1, Venable Industries.</p><p>The companion example, "Step-Down (Buck) DC to DC Converter - Switching", shows the line and load transient response of this converter design. Another companion example, "Step-Down (Buck) DC to DC Converter - Continuous", uses a state-average model of the switching (or modulator) section of the converter, so it supports traditional "AC" or frequency-domain analysis.</p> About text formats Tags Buck ConverterOp-Amp Lead-Lag CompensatorSwitching ConverterPEG127KA3110Q Electrolytic CapacitorMC33272A OP-AMPXAL6060-223 InductorNRVTS560EMFS Schottky Power RectifierStep-Down Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -