Three Phase Power System RobertGodshallDesigner45391 × RobertGodshall Member for 8 years 6 months 4 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/67871 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/67871"></iframe> Title Description <p>This example three-phase power distribution system uses a variety of load types to create realistic static and transient grid-loading conditions and system asymmetries. These include constant power and variable resistance loads, lamps and motors with complex start-up load current profiles, as well as imbalance in the generator, lines and transformers.</p><p>The models provide not only the characteristic behavior of each component, but also internally track the power input, output and dissipation, per phase and in total, so that power flow can be easily monitored. This system can also be used to assess, for example, the potentially destabilizing effect of a constant power load. Its “negative resistance”, or inverse relationship between the input voltage and current, can be observed in the simulation results.</p> About text formats Tags Three PhasePower Flow AnalysisDelta-Wye TransformerConstant Power LoadsMotor Start-upInduction Motorlamp in-rush currentMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Three Phase Power System MarcusMonroeDesigner45776 × MarcusMonroe Member for 8 years 6 months 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/66351 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/66351"></iframe> Title Description <p>This example three-phase power distribution system uses a variety of load types to create realistic static and transient grid-loading conditions and system asymmetries. These include constant power and variable resistance loads, lamps and motors with complex start-up load current profiles, as well as imbalance in the generator, lines and transformers.</p><p>The models provide not only the characteristic behavior of each component, but also internally track the power input, output and dissipation, per phase and in total, so that power flow can be easily monitored. This system can also be used to assess, for example, the potentially destabilizing effect of a constant power load. Its “negative resistance”, or inverse relationship between the input voltage and current, can be observed in the simulation results.</p> About text formats Tags Three PhasePower Flow AnalysisDelta-Wye TransformerConstant Power LoadsMotor Start-upInduction Motorlamp in-rush currentMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Automotive Electrical Power Distribution System RafaelOrozcoDesigner45781 × RafaelOrozco Member for 8 years 6 months 5 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/66326 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/66326"></iframe> Title Description <p>This automotive electrical power distribution system example includes multiple vehicle sub-systems and components. It supports sizing analysis for wires and fuses, under both static and transient loading conditions. This includes multi-discipline (i.e. electro-thermal-mechanical) dynamic operations such as incandescent lamp in-rush current and motor start-up conditions. The example also demonstrates the special characteristics and design considerations needed for constant power loads, such as switching converters used in LED Driver circuits.</p><p>This system also uses a special “direction sensitive” current monitor model that can help identify sneak circuits (i.e. unintended current paths), such as the one found in the “door-ajar”, ignition switch, chime and dome lamp interconnect circuit. Challenge: See if you can find it before running the simulation!</p> About text formats Tags Fuse Sizingwire sizinglamp in-rush currentsneak circuitMotor Start-upLED LightingConstant Power LoadsMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Automotive Electrical Power Distribution System RafaelOrozcoDesigner45781 × RafaelOrozco Member for 8 years 6 months 5 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/66316 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/66316"></iframe> Title Description <p>This automotive electrical power distribution system example includes multiple vehicle sub-systems and components. It supports sizing analysis for wires and fuses, under both static and transient loading conditions. This includes multi-discipline (i.e. electro-thermal-mechanical) dynamic operations such as incandescent lamp in-rush current and motor start-up conditions. The example also demonstrates the special characteristics and design considerations needed for constant power loads, such as switching converters used in LED Driver circuits.</p><p>This system also uses a special “direction sensitive” current monitor model that can help identify sneak circuits (i.e. unintended current paths), such as the one found in the “door-ajar”, ignition switch, chime and dome lamp interconnect circuit. Challenge: See if you can find it before running the simulation!</p> About text formats Tags Fuse Sizingwire sizinglamp in-rush currentsneak circuitMotor Start-upLED LightingConstant Power LoadsMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Three Phase Power System PacmeMagninDesigner12106 × PacmeMagnin Member for 8 years 11 months 13 designs 1 groups https://explore.partquest.com/node/66181 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/66181"></iframe> Title Description <p>This example three-phase power distribution system uses a variety of load types to create realistic static and transient grid-loading conditions and system asymmetries. These include constant power and variable resistance loads, lamps and motors with complex start-up load current profiles, as well as imbalance in the generator, lines and transformers.</p><p>The models provide not only the characteristic behavior of each component, but also internally track the power input, output and dissipation, per phase and in total, so that power flow can be easily monitored. This system can also be used to assess, for example, the potentially destabilizing effect of a constant power load. Its “negative resistance”, or inverse relationship between the input voltage and current, can be observed in the simulation results.</p> About text formats Tags Three PhasePower Flow AnalysisDelta-Wye TransformerConstant Power LoadsMotor Start-upInduction Motorlamp in-rush currentMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Three Phase Power System franckDesigner17016 × franck Member for 8 years 10 months 18 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/63656 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/63656"></iframe> Title Description <p>This example three-phase power distribution system uses a variety of load types to create realistic static and transient grid-loading conditions and system asymmetries. These include constant power and variable resistance loads, lamps and motors with complex start-up load current profiles, as well as imbalance in the generator, lines and transformers.</p><p>The models provide not only the characteristic behavior of each component, but also internally track the power input, output and dissipation, per phase and in total, so that power flow can be easily monitored. This system can also be used to assess, for example, the potentially destabilizing effect of a constant power load. Its “negative resistance”, or inverse relationship between the input voltage and current, can be observed in the simulation results.</p> About text formats Tags Three PhasePower Flow AnalysisDelta-Wye TransformerConstant Power LoadsMotor Start-upInduction Motorlamp in-rush currentMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Automotive Electrical Power Distribution System AntonioHOFonsecaDesigner42171 × AntonioHOFonseca Member for 8 years 7 months 3 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/62876 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/62876"></iframe> Title Description <p>This automotive electrical power distribution system example includes multiple vehicle sub-systems and components. It supports sizing analysis for wires and fuses, under both static and transient loading conditions. This includes multi-discipline (i.e. electro-thermal-mechanical) dynamic operations such as incandescent lamp in-rush current and motor start-up conditions. The example also demonstrates the special characteristics and design considerations needed for constant power loads, such as switching converters used in LED Driver circuits.</p><p>This system also uses a special “direction sensitive” current monitor model that can help identify sneak circuits (i.e. unintended current paths), such as the one found in the “door-ajar”, ignition switch, chime and dome lamp interconnect circuit. Challenge: See if you can find it before running the simulation!</p> About text formats Tags Fuse Sizingwire sizinglamp in-rush currentsneak circuitMotor Start-upLED LightingConstant Power LoadsMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Three Phase Power System AhmadMorovatiDesigner42111 × AhmadMorovati Member for 8 years 7 months 4 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/62826 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/62826"></iframe> Title Description <p>This example three-phase power distribution system uses a variety of load types to create realistic static and transient grid-loading conditions and system asymmetries. These include constant power and variable resistance loads, lamps and motors with complex start-up load current profiles, as well as imbalance in the generator, lines and transformers.</p><p>The models provide not only the characteristic behavior of each component, but also internally track the power input, output and dissipation, per phase and in total, so that power flow can be easily monitored. This system can also be used to assess, for example, the potentially destabilizing effect of a constant power load. Its “negative resistance”, or inverse relationship between the input voltage and current, can be observed in the simulation results.</p> About text formats Tags Three PhasePower Flow AnalysisDelta-Wye TransformerConstant Power LoadsMotor Start-upInduction Motorlamp in-rush currentMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Automotive Electrical Power Distribution System wiekftuaraDesigner39731 × wiekftuara Member for 8 years 7 months 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/61071 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/61071"></iframe> Title Description <p>This automotive electrical power distribution system example includes multiple vehicle sub-systems and components. It supports sizing analysis for wires and fuses, under both static and transient loading conditions. This includes multi-discipline (i.e. electro-thermal-mechanical) dynamic operations such as incandescent lamp in-rush current and motor start-up conditions. The example also demonstrates the special characteristics and design considerations needed for constant power loads, such as switching converters used in LED Driver circuits.</p><p>This system also uses a special “direction sensitive” current monitor model that can help identify sneak circuits (i.e. unintended current paths), such as the one found in the “door-ajar”, ignition switch, chime and dome lamp interconnect circuit. Challenge: See if you can find it before running the simulation!</p> About text formats Tags Fuse Sizingwire sizinglamp in-rush currentsneak circuitMotor Start-upLED LightingConstant Power LoadsMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Automotive Electrical Power Distribution System JosueBonillaDesigner38131 × JosueBonilla Member for 8 years 8 months 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/58366 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/58366"></iframe> Title Description <p>This automotive electrical power distribution system example includes multiple vehicle sub-systems and components. It supports sizing analysis for wires and fuses, under both static and transient loading conditions. This includes multi-discipline (i.e. electro-thermal-mechanical) dynamic operations such as incandescent lamp in-rush current and motor start-up conditions. The example also demonstrates the special characteristics and design considerations needed for constant power loads, such as switching converters used in LED Driver circuits.</p><p>This system also uses a special “direction sensitive” current monitor model that can help identify sneak circuits (i.e. unintended current paths), such as the one found in the “door-ajar”, ignition switch, chime and dome lamp interconnect circuit. Challenge: See if you can find it before running the simulation!</p> About text formats Tags Fuse Sizingwire sizinglamp in-rush currentsneak circuitMotor Start-upLED LightingConstant Power LoadsMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -