Loudspeaker experiment DarrellDesigner10 × Darrell Member for 11 years 2 months 624 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/40181 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/40181"></iframe> Title Description About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier YuliKosinovskyDesigner17956 × YuliKosinovsky Member for 9 years 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/39421 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/39421"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier CReimanDesigner13936 × CReiman Member for 9 years 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/37626 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/37626"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier JayneDesigner27 × Jayne Member for 11 years 1 month 2 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/37546 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/37546"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier DarrellDesigner10 × Darrell Member for 11 years 2 months 624 designs 10 groups Big fan of VHDL-AMS https://explore.partquest.com/node/37041 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/37041"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0). Also, the red "hot part monitor", with the junction to solder-point thermal resistance set to 10 C/Watt as given in the datasheet, shows the part temperature rising to well over 100 C. These diagnostic indicators make it obvious that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier PacmeMagninDesigner12106 × PacmeMagnin Member for 9 years 1 month 13 designs 1 groups https://explore.partquest.com/node/36551 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/36551"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0), making it obvious in this case that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier JosVelzquezDesigner12031 × JosVelzquez Member for 9 years 1 month 5 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/36466 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/36466"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0), making it obvious in this case that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier HoussemBenAbdallahDesigner6251 × HoussemBenAbdallah Member for 9 years 2 months 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/27011 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/27011"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0), making it obvious in this case that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier DPHussainDesigner5001 × DPHussain Member for 9 years 2 months 1 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/27006 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/27006"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0), making it obvious in this case that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -
Loudspeaker with Simple Amplifier MarkDeArmanDesigner5776 × MarkDeArman Member for 9 years 2 months 6 designs 1 groups Add a bio to your profile to share information about yourself with other SystemVision users. https://explore.partquest.com/node/26521 <iframe allowfullscreen="true" referrerpolicy="origin-when-cross-origin" frameborder="0" width="100%" height="720" scrolling="no" src="https://explore.partquest.com/node/26521"></iframe> Title Description <p>This simple* analog electronic amplifier design demonstrates the importance of multi-discipline system modeling. A swept frequency response test, from 40 Hz to 1000 Hz, shows the complex amplifier loading effect of the voice-coil and speaker-cone dynamics. The electro-mechanical resonances strongly affect the current that must be supplied, in order to maintain a flat (controlled) output voltage over the specified frequency range. For example, the current in the voice-coil reaches a null at time 0.1 seconds, which corresponds to the effective "spring-mass" resonance frequency. The loudspeaker reaches its minimum impedance around 600 Hz, or near 0.6 seconds, where the peak load current is observed.</p><p>Normalized component stress monitoring signals are provided in all “datasheet specified” electronics models. For example, the simulation results show that the average power (bjt1/pwr_avg) in the BDP947 NPN BJT exceeds its 5 Watt rating across the entire range, but especially at lower frequencies. The corresponding stress monitor (bjt1/stress_ratio_power_avg) normalizes the transistor's average power relative to its 5W rating, so it is easy to see that the component is stressed (i.e. stress_ratio_power_avg > 1.0), making it obvious in this case that we need a bigger transistor!</p><p>*Note: This is not intended to be a practical amplifier design. There is no blocking capacitor at the output, so it allows undesirable DC current into the voice coil. The purpose is to focus attention on the dynamic characteristics of the loudspeaker and not the circuit itself. </p> About text formats Tags LoudspeakerAmplifierelectro-mechanical resonanceBDP947NCV20071 Op-AmpBDP947 NPN TransistorMechatronics Select a tag from the list or create your own.Drag to re-order taxonomy terms. License - None -